992 research outputs found

    Sequential nonideal measurements of quantum oscillators: Statistical characterization with and without environmental coupling

    Full text link
    A one-dimensional quantum oscillator is monitored by taking repeated position measurements. As a first con- tribution, it is shown that, under a quantum nondemolition measurement scheme applied to a system initially at the ground state, (i) the observed sequence of measurements (quantum tracks) corresponding to a single experiment converges to a limit point, and that (ii) the limit point is random over the ensemble of the experiments, being distributed as a zero-mean Gaussian random variable with a variance at most equal to the ground-state variance. As a second contribution, the richer scenario where the oscillator is coupled with a frozen (i.e., at the ground state) ensemble of independent quantum oscillators is considered. A sharply different behavior emerges: under the same measurement scheme, here we observe that the measurement sequences are essentially divergent. Such a rigorous statistical analysis of the sequential measurement process might be useful for characterizing the main quantities that are currently used for inference, manipulation, and monitoring of many quantum systems. Several interesting properties of the quantum tracks evolution, as well as of the associated (quantum) threshold crossing times, are discussed and the dependence upon the main system parameters (e.g., the choice of the measurement sampling time, the degree of interaction with the environment, the measurement device accuracy) is elucidated. At a more fundamental level, it is seen that, as an application of basic quantum mechanics principles, a sharp difference exists between the intrinsic randomness unavoidably present in any quantum system, and the extrinsic randomness arising from the environmental coupling, i.e., the randomness induced by an external source of disturbance.Comment: pages 16 Figures

    Noise Estimate of Pendular Fabry-Perot through Reflectivity Change

    Full text link
    A key issue in developing pendular Fabry-Perot interferometers as very accurate displacement measurement devices, is the noise level. The Fabry-Perot pendulums are the most promising device to detect gravitational waves, and therefore the background and the internal noise should be accurately measured and reduced. In fact terminal masses generates additional internal noise mainly due to thermal fluctuations and vibrations. We propose to exploit the reflectivity change, that occurs in some special points, to monitor the pendulums free oscillations and possibly estimate the noise level. We find that in spite of long transients, it is an effective method for noise estimate. We also prove that to only retain the sequence of escapes, rather than the whole time dependent dynamics, entails the main characteristics of the phenomenon. Escape times could also be relevant for future gravitational wave detector developments.Comment: PREPRINT Metrology for Aerospace (MetroAeroSpace), 2014 IEEE Publication Year: 2014, Page(s): 468 - 47

    Parameterizing Quasiperiodicity: Generalized Poisson Summation and Its Application to Modified-Fibonacci Antenna Arrays

    Full text link
    The fairly recent discovery of "quasicrystals", whose X-ray diffraction patterns reveal certain peculiar features which do not conform with spatial periodicity, has motivated studies of the wave-dynamical implications of "aperiodic order". Within the context of the radiation properties of antenna arrays, an instructive novel (canonical) example of wave interactions with quasiperiodic order is illustrated here for one-dimensional (1-D) array configurations based on the "modified-Fibonacci" sequence, with utilization of a two-scale generalization of the standard Poisson summation formula for periodic arrays. This allows for a "quasi-Floquet" analytic parameterization of the radiated field, which provides instructive insights into some of the basic wave mechanisms associated with quasiperiodic order, highlighting similarities and differences with the periodic case. Examples are shown for quasiperiodic infinite and spatially-truncated arrays, with brief discussion of computational issues and potential applications.Comment: 29 pages, 10 figures. To be published in IEEE Trans. Antennas Propagat., vol. 53, No. 6, June 200

    Perspectives on Beam-Shaping Optimization for Thermal-Noise Reduction in Advanced Gravitational-Wave Interferometric Detectors: Bounds, Profiles, and Critical Parameters

    Get PDF
    Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravitational wave interferometric detectors. Based on some recently published analytic approximations (valid in the infinite-test-mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams, this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular, with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment, absolute and realistic lower-bounds for the various thermal noise constituents are obtained and compared with the current status (Gaussian beams) and trends ("mesa" beams), indicating fairly ample margins for further reduction. In this framework, the effective dimension of the related optimization problem, and its relationship to the critical design parameters are identified, physical-feasibility and model-consistency issues are considered, and possible additional requirements and/or prior information exploitable to drive the subsequent optimization process are highlighted.Comment: 12 pages, 9 figures, 2 table

    Neural Network Aided Glitch-Burst Discrimination and Glitch Classification

    Full text link
    We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored.In order to provide a proof of concept,we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-tonoise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation algorithm (MLP-BP) on a data subset, and used to classify the transients as glitch or burst. A Self-Organizing Map (SOM) architecture is finally used to classify the glitches. The glitch/burst discrimination and glitch classification abilities are gauged in terms of the related truth tables. Preliminary results suggest that the approach is effective and robust throughout the SNR range of practical interest. Perspective applications pertain both to distributed (network, multisensor) detection of GWBs, where someintelligenceat the single node level can be introduced, and instrument diagnostics/optimization, where spurious transients can be identified, classified and hopefully traced back to their entry point

    On the Analytic Structure of a Family of Hyperboloidal Beams of Potential Interest for Advanced LIGO

    Get PDF
    For the baseline design of the advanced Laser Interferometer Gravitational-wave Observatory (LIGO), use of optical cavities with non-spherical mirrors supporting flat-top ("mesa") beams, potentially capable of mitigating the thermal noise of the mirrors, has recently drawn a considerable attention. To reduce the severe tilt-instability problems affecting the originally conceived nearly-flat, "Mexican-hat-shaped" mirror configuration, K. S. Thorne proposed a nearly-concentric mirror configuration capable of producing the same mesa beam profile on the mirror surfaces. Subsequently, Bondarescu and Thorne introduced a generalized construction that leads to a one-parameter family of "hyperboloidal" beams which allows continuous spanning from the nearly-flat to the nearly-concentric mesa beam configurations. This paper is concerned with a study of the analytic structure of the above family of hyperboloidal beams. Capitalizing on certain results from the applied optics literature on flat-top beams, a physically-insightful and computationally-effective representation is derived in terms of rapidly-converging Gauss-Laguerre expansions. Moreover, the functional relation between two generic hyperboloidal beams is investigated. This leads to a generalization (involving fractional Fourier transform operators of complex order) of some recently discovered duality relations between the nearly-flat and nearly-concentric mesa configurations. Possible implications and perspectives for the advanced LIGO optical cavity design are discussed.Comment: 9 pages, 6 figures, typos corrected, Eqs. (24) and (26) change

    Directive Emission from Defect-Free Dodecagonal Photonic Quasicrystals: A Leaky-Wave Characterization

    Full text link
    In this paper, we study the radiation from embedded sources in two-dimensional finite-size "photonic-quasicrystal" (PQC) slabs made of dielectric rods arranged according to a 12-fold symmetric aperiodic tiling. The results from our investigation, based on rigorous full-wave simulations, show the possibility of achieving broadside radiation at multiple frequencies, with high-directivity (e.g., 15 dB) and low-sidelobes (e.g., -12 dB). We also show that leaky waves are supported by a PQC slab, and that the beamwidth is directly proportional to the leaky-wave attenuation constant, which provides a physically-incisive interpretation of the observed radiation characteristics.Comment: 7 pages, 7 figures; slight change in the title, major revision in the text and figures. Accepted for publication in Phys. Rev.
    • …
    corecore